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Abstract—Optimizing scientific applications on today’s
accelerator-based high performance computing systems can be
challenging, especially when multiple GPUs and CPUs with
heterogeneous memories and persistent non-volatile memories
are present. An example is Summit, an accelerator-based system
at the Oak Ridge Leadership Computing Facility (OLCF) that
is rated as the world’s fastest supercomputer to-date. New
strategies are thus needed to expose the parallelism in legacy
applications, while being amenable to efficient mapping to the
underlying architecture.

In this paper we discuss our experiences and strategies to port
a scientific application, DCA++, to Summit. DCA++ is a high-
performance research application that solves quantum many-
body problems with a cutting edge quantum cluster algorithm,
the dynamical cluster approximation.

Our strategies aim to synergize the strengths of the different
programming models in the code. These include: (a) stream-
lining the interactions between the CPU threads and the GPUs,
(b) implementing computing kernels on the GPUs and decreasing
CPU-GPU memory transfers, (c) allowing asynchronous GPU
communications, and (d) increasing compute intensity by com-
bining linear algebraic operations.

Full-scale production runs using all 4600 Summit nodes
attained a peak performance of 73.5 PFLOPS with a mixed
precision implementation. We observed a perfect strong and weak
scaling for the quantum Monte Carlo solver in DCA++, while
encountering about 2× input/output (I/O) and MPI communica-
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tion overhead on the time-to-solution for the full machine run.
Our hardware agnostic optimizations are designed to alleviate
the communication and I/O challenges observed, while improving
the compute intensity and obtaining optimal performance on a
complex, hybrid architecture like Summit.

Index Terms—DCA, Quantum Monte Carlo, QMC, CUDA,
CUDA aware MPI, Summit@OLCF, Spectrum MPI

I. INTRODUCTION

With rapidly changing microprocessor designs, the next
generation high performance computers will have massive
amounts of hierarchical memory available on the node, from
user-managed caches, DRAM, high bandwidth memory and
non-volatile memory (NVMs). On the other hand, exploring
the best ways to integrate multiple programming models for
collective optimization of performance remains one of the
biggest challenges. Systems like OLCF’s Summit1 generate the
majority of floating point operations per second (FLOPS) from
GPUs (as high as 97%), which are throughput optimized with
a large number of threads, while CPUs are latency optimized.
Thus, finding the right balance between memory access and
computation work distribution, according to the underlying
heterogeneous hardware without sacrificing efficiency and
scalability, is still an outstanding research problem.

The first step to addressing this issue is to understand how
“asynchronous” execution models can be used to: (a) describe
units of work; (b) let the runtime system efficiently schedule
work to hide the latency in accessing various memory hierar-
chies and NUMA domains; and (c) determine if heterogeneous
threads are a possible solution. Current programming models
that provide “rigid” synchronization constructs (e.g., full sys-
tem barriers at the end of loops) may not be able to scale due
to the high overhead of the massive parallelism with threads.

1World’s fastest supercomputer with a theoretical performance of 200
peta-FLOPS (PFLOPS) as of June 2019 [1].
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In this work, we discuss the programming styles and
strategies that were used in the development of DCA++.
DCA++ implements a quantum cluster method [2] known as
the dynamical cluster approximation (DCA) [2]–[4], with a
quantum Monte Carlo (QMC) kernel for modeling strongly
correlated electron systems. The DCA++ code currently uses
three different programming models (MPI, CUDA, and C++
Standard threads), together with numerical libraries (BLAS,
LAPACK and MAGMA), to expose the parallelization in
computations. Optimizing one single programming model does
not necessarily help us achieve our efficiency / scalability
goal. We discuss our vision on how we may use a general
programming style or strategy(ies) to exploit the underlying
memory hierarchy.

A. Contribution

The primary contributions of this work are outlined below:
(a) Custom thread pool for on-node parallelization and man-

aging GPU driver threads.
(b) Improved delayed sub-matrix updates to increase GPU

utilization.
(c) Asynchronous communication among multiple GPUs on

Summit.
(d) Accumulation of complex measurements ported from the

CPU to GPU, accounting for significant performance
improvement in runtime and GPU utilization.

(e) Delayed Non-uniform Fast Fourier Transform in single-
particle accumulation.

(f) Batched matrix-matrix multiplication for small 2D
Fourier transforms in two-particle accumulation.

(g) Mixed precision operations on GPUs.

II. BACKGROUND

The study and understanding of strongly correlated elec-
tronic systems is one of the greatest challenges in condensed
matter physics today. Strongly correlated electron systems are
characterized by strong electron-electron interactions, which
give rise to exotic states and fascinating properties such as
multiferroicity2 and high-temperature superconductivity. These
properties open the door for technological advances in appli-
cations such as data storage and MRI machines. However,
current methodologies based on density functional theory
(DFT), the workhorses for electronic structure calculations, fail
to describe the effects of correlations that govern the physics
in strongly interacting electron systems.

The complexity of the general electronic structure problem
and the failure of DFT has led to the development of reduced
models that are believed to capture the relevant physics under-
lying the observed properties. The most prominent example is
the use of the two-dimensional (2D) Hubbard model for the
study of high-temperature superconducting copper-oxide based
materials (cuprates) [5], [6], for instance. The Hubbard model
describes interacting electrons on a lattice, which can hop

2Multiferroics are materials exhibiting more than one ferroic property
such as ferromagnetism and /or ferroelectricity.

between lattice sites and interact through an on-site Coulomb
repulsion. Formally, the Hamiltonian is given by

H = H0 +Hint = −t
∑
〈i,j〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (1)

The first term of (1), where 〈i, j〉 indicates that the sum
runs over nearest-neighbor sites i and j, represents the electron
hopping with amplitude t. The second term, where the sum
runs over all lattice sites i, captures the on-site Coulomb
interaction of strength U . The index σ ∈ {↑, ↓} represents
the electron spin. Systems with multiple electron bands per
lattice site are also supported.

Mathematically, the Hamiltonian is represented by a matrix.
Solving for the possible energy levels and states of the system
is equivalent to solving for the eigenvalues and eigenstates
of the Hamiltonian matrix. However, exact diagonalization
studies of the 2D Hubbard model are restricted to very small
lattices as the problem size scales exponentially with the
number of lattice sites. Quantum Monte Carlo simulations,
in turn, are plagued by the infamous fermion sign problem,
which again limits the accessible lattice sizes and prevents
calculations at low temperatures [7]. To study Hubbard model
type of problems, dynamical mean field theory (DMFT) [8]
has become one method of choice. In DMFT the complexity
of the infinite lattice problem is reduced by mapping it to a
self-consistent solution of an effective impurity model, thereby
treating only spatially local correlations exactly and including
non-local correlations on a mean-field level. In order to treat
additional non-local correlations that are important to under-
stand the mechanism of high-temperature superconductivity,
for example, DMFT has been extended by quantum cluster ap-
proaches such as the dynamical cluster approximation (DCA)
[2]–[4].

DCA is a numerical simulation tool to predict physical
behaviors (such as superconductivity, magnetism, etc.) of
correlated quantum materials [9]. The DCA++ code3 computes
the many-body (single-particle and two-particle) Green’s func-
tions for a Hubbard-type material of interest. Properties of the
materials, such as the superconducting transition temperature,
can be calculated from these many-body Green’s functions.

DCA++ has an iterative, self-consistent algorithm with two
primary kernels (see Fig. 1): (a) Coarse-graining of the single-
particle Green’s function to reduce the complexity of the
infinite size lattice problem to that of an effective finite size
cluster problem, and, (b) quantum Monte Carlo based solution
of the effective cluster problem.

Almost all of DCA’s computing time is spent in the QMC
solver. Fig. 2 shows its general workflow.

A. Coarse-graining

The DCA algorithm replaces the infinite lattice problem
by a finite-size impurity cluster that is embedded in a

3The DCA++ code has been created in a collaboration between Oak
Ridge National Laboratory (ORNL) and ETH Zurich. ORNL’s DCA++ code
won the Gordon Bell Award in 2008 for the first petascale computation of
high-temperature superconductors [10].
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Fig. 1. General workflow of the DCA++ application, showing two primary
kernels and input/output to each of the kernels. On distributed multi-core
machines we exploit the underlying hardware with a two level (MPI +
threading) parallelization scheme.

self-consistent mean-field. Formally, we substitute the
lattice self-energy by ΣDCA(~k, iωn), a piecewise constant
continuation of the cluster self-energy Σc( ~K, iωn):
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Fig. 2. The computation structure of the quantum Monte Carlo kernel. This
figure shows the levels of parallelism in an iteration of the QMC solver (the
MPI communication, thread level parallelism and accelerator level ). Each rank
(N1 – N4) is assigned a Markov Chain and the initial Green’s function, G.
Each rank spawns worker threads (walkers and accumulators). Computation
performed by the walker threads are done on the GPU, upon completion
the walkers send measurements over to the accumulator threads, running on
the CPU (asynchronous computation) to generate partial G’s (GN2

′, GN2
′′,

GN2
′′′ etc. on node N2). The partial G’s are then reduced within the node

to give GN2 (GN1, GN3 and GN4 for nodes N1, N3 and N4 accordingly),
followed by a MPI_AllReduce operation that computes the final G. This
G is then fed into the coarse-graining step in the next iteration.

ΣDCA(~k, iωn) =
∑
~K

φ ~K(~k) Σc( ~K, iωn) , (2)

where ωn = 2nπ
β is a Matsubara frequency, β = 1/T is the

inverse temperature, and the patch function φ ~K(~k) is one if the
momentum ~k lies inside the ~K th patch, and is zero otherwise.
The sum runs over a mesh of points in ~K-space, centered
around by the reciprocal cluster points ~k.

The single-particle Green’s function G(~k, iωn), which de-
scribes the propagation of a single electron bearing a momen-
tum ~k and a frequency ωn, is then coarse-grained over the
patches to obtain the coarse-grained single-particle Green’s
function Ḡ( ~K, iωn):

Ḡ( ~K, iωn) = Nc

VBZ

∫
d~k φ ~K(~k)

[
G−10 (~k, iωn)− ΣDCA(~k, iωn)

]−1
,

(3)
where Nc denotes the cluster size, VBZ is the volume of the
Brillouin zone, and

G0(~k, iωn) =
1

iωn −H0(~k) + µ
(4)

is the Green’s function corresponding to the non-interacting
part of the Hamiltonian, H0 in (1). The chemical potential µ
is a parameter that needs to be adjusted by iterating the coarse-
graining step until the desired electron density is obtained.
The density can be calculated from the value of the Fourier
transform of G(~k, iωn) into real space and time coordinates,
then evaluated at zero time and displacement in real space.

This makes the problem tractable by reducing the degrees of
freedom to those of the cluster, while still retaining informa-
tion about the remaining lattice degrees of freedom in an aver-
aged fashion. The coarse-grained Green’s function Ḡ( ~K, iωn)
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and the cluster self-energy Σc( ~K, iωn) = ΣDCA( ~K, iωn)
define the bare Green’s function of an effective cluster problem
through the Dyson equation,

G0( ~K, iωn) =
[
Ḡ−1( ~K, iωn) + Σc( ~K, iωn)

]−1
. (5)

From G0( ~K, iωn), we can use the Monte Carlo techniques,
to be described in the following subsection, to produce a
corrected coarse-grained single-particle Green’s function that
includes the contribution from the interacting part of the
Hamiltonian, Hint in (1). We can then calculate a new cluster
self-energy Σc( ~K, iωn) for the next iteration, which closes the
DCA self-consistency loop.

B. Quantum Monte Carlo (QMC) solver

We employ a continuous time auxiliary-field (CT-AUX)
QMC algorithm [11], [12]. Our implementation of the CT-
AUX solver incorporates submatrix updates [12] and accu-
mulation of measurements with non-equidistant fast Fourier
transforms [13]. In the CT-AUX methodology, the partition
function Z is expressed as an expansion in terms of the N -
matrices

(
Nσ
{si,τi}k

)
:

Z =
∑
k≥0

∑
si=±1
1≤i≤k

∫ β

0

dτ1· · ·
∫ β

τk−1

dτk

(
K

2β

)k
Zk({si, τi}k),

Zk({si, τi}k) = Z0

∏
σ=↑,↓

∣∣∣Nσ
{si,τi}k

∣∣∣−1 ,
(6)

and Z0 = Tre−βH0 . Here, the imaginary time τ1 . . . τk ∈
[0, β). The constant K is introduced to express Z in the
interacting representation; the quartic interaction term in the
Hamiltonian has been replaced through a Rombout’s decou-
pling by a coupling to an Ising auxiliary spin field si [11],
and σ =↑, ↓ is the electron spin. The outer sum runs over the
expansion order k, and the inner sum runs over the k auxiliary
spin fields si.

During the simulation, the expansion order k has a peaked
distribution around a mean value that scales as O(Nc U/T ),
where Nc is the cluster size and T is the temperature. The
memory requirement for the random walk scales as O(k2),
while the computational cost scales as O(k3).

The quantity that needs to be measured from the random
walk (by the walkers), and to be used in the following
iterations of the DCA loop, is the single-particle Green’s
function (dropping variable dependence for clarity):

G = G0 − G0M G0, (7)

where G = G(~k, iωn) and G0 = G0( ~K, iωn) are introduced
in Section II-A, M is a k × k matrix produced by the MC
walker, closely related to the inverse of N from (6).

Samples of M , which is a translational invariant function
of real space and imaginary time, are measured during the
MC procedure. Working in frequency and momentum Fourier
space has the advantage that all terms that enter in (7) are

diagonal. We therefore perform a series of batched 2D Fourier
transforms over the two time indices of M to transform them
to the frequency domain. Similarly, we transform the space
indices to the momentum domain.

Besides the single-particle function, another important quan-
tity to accumulate is the 4-point two-particle correlation func-
tion Gtp. We compute Gtp in the particle-particle channel,
from which one can extract information of the superconducting
behavior. In the QMC algorithm, this function is accumulated
according to

Gtp(K1,K2,K3) +=
∑
σ

Gσ(K3−K2,K3−K1)G−σ(K2,K1) .

(8)
Here Ki is a combined index representing a particular point
in the momentum and frequency space, and σ specifies the
electron spin value.

This Gtp correlation function describes the propagation
of a pair of electrons with opposite spin from momen-
tum/frequency (K2,K3 − K2) and center of mass momen-
tum/frequency K3 to their scattered states with momen-
tum/frequency (K1,K3 −K1).

The Appendix summarizes the definition of each physical
quantity introduced in this section and to be used in the the
next section for the implementation of DCA++ algorithm.

III. IMPLEMENTATION

In this section, we outline our implementation of the im-
proved DCA++ code, as well as our design and parallelization
strategies on the Summit supercomputer. As shown in Fig. 1,
the two main kernels of DCA++ are: (a) the coarse-graining
step, and, (b) the quantum Monte Carlo solver. A primary
challenge in the optimization of this code is that the runtime
of different sections of the algorithm scales differently with a
subset of the input parameters.

A. Input parameters

We set up a low temperature simulation of a system
representing a typical production level execution: a single-
band square lattice Hubbard model with Coulomb repulsion
U/t = 4, temperature T/t = 0.02 and DCA cluster size
Nc = 36. The average expansion order observed with this
set of parameters is k = 2600. A fixed number of 80 million
total measurements were performed to study strong scaling,
while a fixed number of 50,000 measurements per node (i.e.,
a fixed runtime of about 12 minutes) were performed for the
weak scaling study.

Each simulation sampled ωsp = 2048 Matsubara frequencies
for the single-particle Green’s function and ωtp = 128 Matsub-
ara frequencies for each dimension of the two-particle Green’s
function. All the 10 possible independent momentum transfers
were computed, while the exchange frequency was fixed at
∆ω = 0. The performance evaluation, resource allocation,
and problem specific optimization strategies reported later in
Sections III and IV will refer to this system.
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B. Coarse-graining

The coarse-graining step in (3) does not scale with the
inverse temperature, and its contribution to the runtime is
generally negligible for a production level run. Nevertheless
its overhead can impact the testing and development of the
code, especially as, depending on the initial configuration, (3)
needs to be recomputed several times until the electron density
has converged to the target density.

We parallelized this step of the algorithm with a com-
bination of MPI distribution and multi-threading (C++
std::threads). Each thread of each process can simply integrate
the Green’s function independently for a set of frequency and
cluster momentum values.

This portion of the code greatly benefited from our new par-
allelization implementation based on a thread pool, described
in more detail in Section III-D. We further optimized the code
by: (a) improving the scheduling of the intra-process work,
(b) implementing specialized functions for the inversion of
small matrices, and (c) reducing the number of floating point
operations by taking advantage of the spin symmetry in (3).
Note that the symmetric property of an Hamiltonian matrix
also reduces the memory overhead.

All these optimization led to a significant speedup of
the coarse-graining step compared to the previous DCA++
implementation in version 1.0.0 [14]. The performance varies
widely depending on different system sizes and input param-
eters; on Summit we observed an improvement of 100× to
1000×.

C. Quantum Monte Carlo (QMC) solver

The high dimensional integral in (6) is solved by Monte
Carlo methods. The Monte Carlo integration in DCA++ is the
most computationally intensive step. When porting DCA++ to
Summit, this kernel is where we spent most of our optimiza-
tion effort. These optimizations include the employment of
various parallelization techniques, getting higher GPU utiliza-
tion, reducing memory usage and addressing load imbalance
across nodes.

Monte Carlo algorithms can be massively parallelized by
executing concurrent, independent Markov chains across mul-
tiple nodes. Considering that the majority of the computing
capacity of a simultaneous multi-threading (SMT) machine
(e.g. Summit) comes from the GPUs, one must optimize these
embarrassingly parallel kernels, both inter-node and on-node,
to take full advantage of the underlying hardware.

On machines with hybrid nodes consisting of multi-core
CPUs and GPUs, Monte Carlo implementation and paral-
lelization strategies are hence a little different. Naive im-
plementation of the QMC kernel is not suitable for GPU
acceleration, because the algorithm contains many decision
branches based on the stochastic acceptance or refusal of each
update of the configuration, which needs to be performed
on the CPU. To increase the compute intensity during this
Monte Carlo acceptance-rejection step, DCA++ implements
the continuous-time auxiliary-field algorithm (CT-AUX) with a
submatrix update technique that groups multiple matrix-vector

multiplications into a single matrix-matrix multiply [15]. This
has already been implemented in version 1.0.0 [14].

1) Monte Carlo (MC) walkers: In the QMC solver, the
MC walks are performed to sample the expansion order (k)
space in (6) to obtain an estimation of the sum of the series
expansion. Pictorially, one might imagine a MC move as a
“spin flip” of the Ising auxiliary spin field si, which results in a
change in a column of a matrix. The acceptance probability of
each MC move is proportional to the ratio of the determinant
of the updated matrix with the determinant of the old one
(see e.g., [10] for more details). If the explicit inverse of the
old matrix is available, the new determinant can be computed
using the matrix-determinant lemma, which entails a matrix-
vector multiplication of O(k2) complexity.

In our implementation, the MC walkers combine the effect
of several MC moves into a large matrix-matrix multiplication
and perform the computation on the GPU [12]. While the
complexity of this method is still O(k2) per update, it ensures
that we use the GPU cache efficiently while reducing the
rounds of CPU-GPU communication.

The CPU processes the acceptance of each individual move
and their interaction with each other by growing a smaller
submatrix. We optimized the previous implementation by
using asynchronous copies between the CPU and GPU. We
also improved the implementation of custom kernels for matrix
row and column reorientation by exposing more parallelism to
the GPU threads. These optimization in the MC walker kernel
led to a performance benefit of 1.3× measured while running
a single CPU thread and a single GPU stream.

2) Monte Carlo two-particle accumulation: The second
part of the QMC solver is the measurement of the configura-
tions generated by the MC walkers. We also calculate a larger
two-particle correlation function to capture interesting physical
phenomena of condensed matter, such as superconducting
phase transition at lower temperature.

Based on the input parameters, the number of floating point
operations required to accumulate a measurement scales up to
O(k2 ωtp + k ω2

tp +ω3
tp), where k is the expansion order of the

MC integration, and ωtp is the number of discrete Matsubara
frequencies stored for each dimension of the two-particle
function (see Section III-A for the input parameters we use as
our test case). The number of frequencies required to capture
a phase transition scales with the inverse temperature, which
scales with the expansion order. Hence, the computational cost
of the accumulation step becomes as relevant as the MC walk,
and efficient utilization of the GPUs on hybrid architectures
like Summit is necessary.

Version 2.0 also supports computing multiple frequencies
and momentum transfers in a single execution, allowing the
computation of the full correlation function in a single run.

Our main challenge while developing version 2.0 was to
create a high performance GPU code that also minimizes
the amount of data movement between the CPU-GPU and
GPU-GPU memory. The memory footprint is of particular
importance, as the output correlation function takes more
than 3 GB of device memory, while each intermediate result
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takes around 750MB of memory for the specific system in
Section III-A.

To address this problem, we store intermediate GPU results
in private class members of type std::shared_pointer.
Each C++ objects can be executed and tested independently,
while a higher level manager object can direct each imple-
mentation object to reuse the same memory allocation, when
appropriate.

The two-particle accumulation is implemented by invoking
the following kernels on a GPU stream:
(a) 2D transform from time to frequency domain. The

first step is to perform a 2D Fourier transform of M
from the time domain to the frequency domain. While
this transformation is implemented as a delayed non-
uniform fast Fourier transform (DNFFT) in the case of
the single-particle function, for the two-particle case we
implemented it as a matrix-matrix multiplication.
The non-uniform fast Fourier transform algorithm
(NFFT) requires the convolution of the data on a uniform,
fine grid before applying the FFT algorithm. The memory
required to store a 2D convolution of each orbital pair
is too expensive that it is impossible to execute them
concurrently with sufficient accuracy, unless the number
of transforms is limited. In our test case, for each MC
sample, 1296 Fourier transforms of matrices of average
size 72 × 72 are performed. Considering the bandwidth
of the global memory and the peak performance of a
NVIDIA Tesla V100, the problem is close to the ridge
point of a roofline model. Hence matrix-multiplication is
favored over NFFT, in terms of global memory consump-
tion and access.
We have also considered using the 3M algorithm [16]
to implement the complex matrix multiplications with a
reduced number of floating point operations. While we
use it in the CPU version, we opted out in the GPU
implementation due to additional memory requirement.
We used the batched matrix multiplication routine in
the MAGMA 2.4.0 library [17] to execute the Fourier
transforms in parallel on the GPU.

(b) 2D transform from space to momentum domain.
Another set of 2D Fourier transforms needs to be per-
formed on the space indices of the input tensor. In
our test case, 8385 transforms of 36 × 36 matrices are
performed, using batched matrix-matrix multiplications.
Using a batched FFT algorithm might be necessary if
the DCA++ code was extended to larger clusters, but in
our use case the matrix-matrix multiplication was more
reasonable. Using a custom Fourier matrix allows us to
easily work with clusters of arbitrary shapes and spatial
dimensions, and to combine the Fourier transform with
another linear transformation used to improve the coarse-
graining results in certain cases.

(c) Single-particle Green’s function (G) computation. The
single-particle function G is computed according to (7).

(d) Two-particle Green’s function (Gtp) accumulation.
Finally the single-particle functions are combined to give

the two-particle function through (8). When more than
one accumulation stream per GPU is run concurrently,
this update is an atomic operation. This operation is the
most memory intensive part of the computation. While
storing Gtp on the device allows us to exploit the much
larger bandwidth of GPU memory compared to RAM and
to avoid communications with the CPU, we are limited to
the device memory size. Looking forward, a distributed
MC sampling scheme will need to be implemented to
enable calculations using larger clusters with higher fre-
quency and momentum transfer.

D. Parallelization strategies

Monte Carlo simulations are embarrassingly parallel, which
we exploit on distributed multi-core machines with a two level
(MPI + threading) parallelization scheme (see Fig. 2). On
node, we parallelize the Monte Carlo over several CPU threads
using a custom thread pool. We create several instances of
independent Markov chains, each managed by a walker object
(producer), and one or more accumulator object(s) (consumer)
that measures the single- and two-particle Green’s functions.
In addition, we employed the following strategies to further
improve the performance of our code.

Running multiple walker objects concurrently. This helps
keep the GPU busy while a memory copy is performed.
Each GPU stream associated with the walker waits for the
sub-matrix computation performed on the CPU. As a walker
performs FLOP-intensive operations both on the CPU and on a
CUDA stream, we recommend using as many walkers as CPU
cores, and up to the same number of accumulators provided
it fits in the GPU memory.

Dynamically distributing work at runtime. Unlike version
1.0.0 of DCA++ where the measurements were statically
distributed among MPI ranks and threads, in version 2.0 we
addressed the load imbalance across threads, by allowing each
accumulator to measure a different number of samples, up to
a fixed number of measurements per rank. The measurements
are still distributed statically over the MPI ranks to avoid
inter-node communications, while within the MPI process the
measurements are dynamically assigned to idle threads. For
walker-accumulator synchronization we use two techniques,
either shared threads or separate walker / accumulator thread.

Using equal number of walkers and accumulators. There
is no communication between different CPU threads; after
a walker object produces a MC sample, the accumulator is
called immediately, and en-queues the measurement on an
independent GPU stream, allowing the walker to immediately
start another MC step. Fig. 3 shows a UML diagram of the
synchronization of the shared walker and accumulator threads.

Using less accumulators than walkers due to limitations
in memory. Available accumulators wait in a queue. Upon
the generation of a new MC configuration, the walker copies
it to the front of the queue and signals the accumulator to
start the measurement, and resumes the random walk. When
the accumulator thread finishes its measurement, it goes to the
back of the queue. This method was already implemented in
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version 1.0.0; we improved the efficiency of the queries to the
queue by using the synchronization primitives (std::mutex
and std::conditional_variable) offered by the C++
Standard Library (STL). Fig. 4 shows a UML diagram of the
synchronization between the separate walker and accumulator
threads.

Careful memory management when using multiple ac-
cumulators. Each accumulator object stores a private copy
of the single-particle measurements, while the more memory
intensive two-particle results are accumulated atomically to the
same address space. We observed no performance benefit by
running version 2.0 with more software threads than physical
cores, and only negligible gain in using two threads per core
for the accumulators in version 1.0.0.

Walker

Accumulator

Thread

ClusterSolver

ClusterSolver Walker Accumulator Thread

Setup Solver

create [N] Walker

create [N] Accumulator

Monte Carlo Integration

create [N]

Thread

par [: Threads [N]]

loop [: measurements]

step

update

measure M

reduced M

Fig. 3. UML sequence diagram of synchronized walker and accumulator
threading scheme. Wire frame arrows indicate asynchronous calls.

Manually setting thread affinity and using the simulta-
neous multi-threading (SMT) feature. We noticed that the
code performs better significantly. We used the GNU interface
to the POSIX scheduling. As we executed the new code with
1 thread per physical core, we set the affinity of each thread
to 4 contiguous, non-overlapping virtual cores, except for the
master thread that shares the same affinity with one of the
worker threads in the pool, as they do not run concurrently.

Walkers

Accumulator Queue

Accumulators

ClusterSolver

ClusterSolver Walkers Accumulator Queue Accumulators

Setup Solver

Walkers

Accumulator Queue

Accumulators

Monte Carlo Integration

par
[: Walkers [ ]]

loop [: measurements]

step

configuration

[: Accumulators [ ]]

loop [: walkers done, queue empty]

update

measure

par
[: Accumulators [ ]

reduced

Fig. 4. UML sequence diagram of separate walker and accumulator threads.
Wire frame arrows indicate asynchronous calls.

The speedup of the new code due to these settings is reported
in Table I. The old code exhibits speedup as well when
using the smt4 flag, hence we use it for all the subsequent
measurements.

TABLE I
SPEEDUP OF THE NEW CODE DUE TO CHOICE OF SIMULTANEOUS

MULTI-THREADING (SMT) LEVEL, AND DUE TO THE MANUAL BINDING
OF THE THREAD AFFINITY. THE SAME NUMBER OF THREADS EQUAL TO

THE NUMBER OF PHYSICAL CORES HAS BEEN USED.

SMT = 1 SMT = 4
default affinity - 1.5×
manual affinity 1.07× 2×

Custom thread pool. DCA version 1.1.0 implemented
multi-threading by continuously spawning and merging
POSIX threads. This induced a large overhead that was
compounded by the fact that (3) was parallelized over the
inner summation of ~k points, rather than on the cluster points
~K and frequencies ωn. This caused thousands of threads to
be spawned and joined.

Besides a better parallelization scheme, we also need
a thread pool to limit the creation of OS threads in
DCA++, especially for inputs that require running the coarse-
graining multiple times. We implemented a custom thread
pool using C++11 std::thread. We maintain an array
of std::thread objects and array of queues of work
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TABLE II
NEW CONTRIBUTIONS IN DCA 2.0 OVER DCA 1.1.0.

Implementation DCA 1.1.0 DCA 2.0

Threading model POSIX threads with short lifespan
Customized thread pool using C++
std::thread

Coarse-graining MPI with poor intra-node work distribution

• MPI and improved multi-threading
• Improved intra-process scheduling
• Specialized implementations for inversion of

small matrices
• Reduced floating-point operations by using spin

symmetry

Monte Carlo walker computation On GPU
On GPU, with improved asynchronous CPU-GPU
communications using multiple GPU’s on Summit
and NVLink

Monte Carlo accumulator computation On CPU
On GPU – this is the major contribution to the
performance improvement

Walker-accumulator interaction

• Single accumulator queue with spin locks
• Temporary configuration copies on the CPU
• Static workload distribution

• Improved implementation: avoids spinning on
locks using conditional variables

• Direct GPU-GPU communication between
walker and accumulator

• Dynamic intra-node workload distribution
• Overlapping computation and communication

items represented by std::packaged_task objects. The
completion of an asynchronous call can be queried through the
generated std::future object. The work is dispatched in
a simple round-robin fashion, with an additional integration
of a work-stealing algorithm. The same thread pool is used
both in the coarse-graining step and in the Monte Carlo
integration, where further synchronization between walker and
accumulator threads is expressed in terms of std::mutex
and std::conditional_variable objects.

Compared to the naked POSIX implementation, we have
significantly lowered the overhead. A clean trace can be
generated by most CPU profilers, as the number of OS threads
is constant during the execution. We have obtained a signif-
icant performance improvement by being able to access the
underlying POSIX implementation on Summit, and manually
setting the thread affinity, as shown above.

E. New contributions in DCA++ 2.0 over DCA++ 1.1.0

Table II summarizes the new contributions in DCA++ 2.0
over the older DCA++ 1.1.0 code that lead to the performance
improvements described in this paper.

IV. RESULTS

A. System Architecture: Summit

For our evaluation we mainly used OLCF’s Summit super-
computer. Summit is a 200 PFLOPS IBM AC922 system that
was ranked the first place in the TOP500 list in June 2019
[1]. It delivers approximately 8 times the computational per-
formance of Titan with 4608 hybrid nodes. Each Summit node
contains 2 IBM POWER9 22C 3.07GHz CPUs with 512GB
DDR4 RAM and 6 NVIDIA Volta V100 GPUs with 96GB

high bandwidth memory (HBM) (divided into 2 sockets), all
connected together with NVIDIA’s high-speed NVLink.

B. System Setup

We ran the test case (described in section III-A) on
Summit and compared the performance of the old version
1.1.04 and the new version 2.05 of the code. For each
version, we used 1 GPU and 7 CPU cores per MPI rank
- an even division of all 42 CPU cores on a node into
6 ranks. We ran 1 MPI rank per resource set6, and 6
resource sets per node. We compiled the code with GCC
6.4 using optimization flags -Ofast -funroll-loops
-DNDEBUG -mcpu=power9 -mtune=power9, and opti-
mized the number of software threads for each version.

C. Application Setup

The old code version 1.1.0 was based on version 1.0.0
with minimal modifications to read the same input file and
compute the same Gtp entries for a fair comparison with the
new version. The structure of the code remains the same.
We ran it with 13 accumulators and one walker per rank. It
is because the accumulation took place on the CPU, which
created a bottleneck in the process. Up to 16 accumulators
can fit into the memory, but we observed no run-time benefit
in mapping more accumulator threads to the same physical
core.

We ran the new version of the code with 7 walkers and
7 accumulators, with each walker and accumulator sharing a

4https://github.com/CompFUSE/DCA/releases/tag/paper.2019.old code
5https://github.com/CompFUSE/DCA/releases/tag/paper.2019.new code
6The concept of “resource set” is introduced by IBM’s job launcher

jsrun developed for the Summit Power system.
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thread in a MPI process (see Fig. 3). Since the MC walkers
perform most of the compute intensive work, the run-time
of the MC walkers is limited by the shared GPU resources.
On the other hand, the run-time dependence on the number
of accumulators is negligible. It is possible to use only one
accumulator on a single thread to gather information from all
MC walkers on other threads without a performance penalty.
That is, the walker and the accumulator do not share the same
thread (see Fig. 4).

D. Evaluation

1) Strong scaling performance: We first define the time-
to-solution (TTS) as the “figure of merit” (FOM) to quantify
the strong scaling performance of the code. This is equivalent
to the time required to obtain a fixed number of MC mea-
surements on different number of nodes. Fig. 5 reports the
run-time comparison of the two versions performing a fixed
number of 80 million measurements.
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Fig. 5. Strong scaling plot (log-log) of a production run on OLCF’s
Summit, 80 million measurements (see Section III-A for the detailed system
information). Red squares exhibit a linear scaling of the QMC kernel. Blue
circles show the scaling of the entire DCA++ run-time including MPI
communications for data movement across nodes and I/O from and to the
GPFS file system on Summit. The black square shows the time spent (6.79
hours) by the old code on all 4600 nodes. We observe a performance
improvement of up to 113× comparing the new code with the old code.

We first observe a significant speedup of 113× compared to
the old code (version 1.1.0). This difference is mainly due to
the asynchronous accumulation of measurements on the GPU
in the new code.

With the new code, we observe that the Monte Carlo time
exhibits a perfect strong scaling with the increasing node count
(red squares). It is because as the number of measurements is
evenly divided among the MC walkers, and the number of MC
walkers is proportional to the number of nodes employed, the
linear decrease in the QMC run-time is a direct consequence
of the principle of division of work.

To understand the effect of I/O and communications over-
head on the TTS, we plotted the total run-time (blue circles)

as a comparison. The overhead is almost constant, around 3.5
minutes, for each node count. This is caused by the reading
of the initial configuration from the parallel file system, the
communication and averaging of the Monte Carlo results and
in a small part by the coarse-graining. Although the coarse-
graining is embarrassingly parallel across momentum and
frequency points, we observed that the communication time
can exceed the computation time. We therefore decided to limit
the parallelism of this kernel to gangs of 100 nodes. To lower
the overhead for global sum reductions, we pack different
messages together, casting complex to real pairs and integer
metadata to real numbers whenever it is possible. While the
overhead is still significant, the time-to-solution is still better
than the one reported in [9]. Improvements to the parallel file
system can alleviate the overhead problem.

2) Weak scaling performance: Next, we performed a weak
scaling analysis by increasing the number of measurements
with the number of compute nodes, while keeping the run-
time fixed at 13 minutes. In statistics, the standard error of
the mean is inversely proportional to the square root of the
number of measurements (i.e., ∼ 1/

√
nmeasurements). It is thus

a reasonable FOM to verify the performance of the weak
scaling for Monte Carlo simulations, which quantifies the
improvements in the quality and precision of the simulations
as a function of computing resources.

The error bars on G and Gtp were computed using the
jackknife technique, with the measurements from one MPI
rank grouped together as a bin. Fig. 6 reports the measured
relative errors, which is the l2 norm of the error normalized by
the norm of the signal. As observed from the figure, the error
scales inversely proportional to the square root of the number
of measurements, which signifies a perfect weak scaling.

100 500 1000 2000 4600

101

102

103

Number of Nodes

R
el

at
iv

e
er

ro
rs

(l
2
)

*
10
−
1
0

l2 norm error for G

Fig. 6. Weak scaling plot (log-log) using the same system as in Fig. 5. For
this plot, we fix the QMC run-time at 10 minutes and observe the number
of measurements obtained. The higher the measurements, the higher is the
accuracy, which leads to a lower error. Lower is better. This plot shows the
error for G.

Another observation from Fig. 6 is that given the number of
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measurements, the statistical error for G is much larger than
the single precision accuracy. This hints at the possibility of
making use of mixed precision to improve the performance:
MC walks (Section III-C1) and the single-particle measure-
ments (Section III-C2(c)) in double precision for the accuracy,
while the two-particle measurements (Section III-C2(d)) are
in single precision. Performance gained were measured as
FLOPS count improvement in the following sub-subsection.

3) FLOPS count: We calculated the performance by up-
dating a FLOP counter at each large matrix multiplication on a
GPU in the walker routine and the Gtp accumulation routines.
This provides a tight lower bound to the FLOPS count of
our application. We validated our counting mechanism using
the NVProf profiler on a single node. Considering the peak
performance by the MC step, we got 64.1 PFLOPS for the
new code, while the old code ran only at 0.577 PFLOPS as
it was limited by the long run-time spent on the two-particle
accumulation. With the mixed precision implementation, the
new code achieved a peak performance of 73.6 PFLOPS on
Summit. The higher FLOPS count is due to the use of single
precision in the two-particle measurements, which is about two
times faster than double precision operations. As the relative
error on Gtp is significantly larger than 10−7 on our largest
run, higher precision is not warranted for this calculation.

4) Roofline plot: In this section we analyze the most time-
consuming kernels of our application. We focus on the Monte
Carlo integration part, as the coarse-graining part is no longer
relevant in terms of compute time or FLOPS after applying
the optimizations presented in the previous section, at least for
the chosen physical system.
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Fig. 7 reports the proportion of GPU utilization and floating
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Fig. 8. Performance of the most FLOP-intensive kernels compared against
the roofline model of an NVIDIA V100 GPU with a peak performance of
7.2 TFLOPS and a bandwidth of 900 GB/s. The legend is ordered by total
FLOP consumption. The batched gemm kernels are part of the prepossessing
in the two-particle accumulation, but they do not contribute significantly to
the run-time.

point operations for each kernel contributing the most to the
TTS, while the roofline plot in Fig. 8 shows the efficiency
of the most FLOP-intensive kernels. These measurements
were obtained using NVIDIA visual profiler (NVProf) on a
serialized execution, i.e. one walker, one accumulator, and one
GPU stream. We have validated our plot with the Intel Advisor
on the PizDaint system7 at Swiss National Supercomputing
Centre (CSCS), ETH Zurich.

Most of the time was spent on the dgemm kernel for
matrix-matrix multiplications used by the MC walker, and on
the updateG4 kernel used by two-particle accumulation. One
should note that these kernels are already highly optimized
and close to the theoretical peak performance. The bandwidth
of the kernel swapRows, used for the reordering of the MC
configurations, is limited by the strided access to column-
major data, and a similar swapColumns kernel is also nec-
essary. In principle, the kernel updateG used in single-particle
accumulation could be further optimized by distributing the
workload among threads that would result in fewer bank
conflicts. But given its small share in the run-time, the benefit
of such an effort would be rather small.

In summary, the high performance of our application is
attributed by a number of factors. Firstly, a good portion of the
run-time is spent on efficient matrix-multiplications in the MC
walkers that accounts for most of the FLOP count. Secondly,
the overlap of computations and data transfers is enabled by
using multiple GPU streams to keep the device busy during
memory transfers and CPU updates. Finally, the parallelized
measurement scheme contributes only a small overhead while
greatly improves the concurrency.

7A Cray XC50 machine with Xeon E5-2690v3 12C 2.6GHz CPUs and
NVIDIA Tesla P100 GPUs. Sixth place in the TOP500 list as of June 2019
[1].
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V. LESSONS LEARNED

From our experience porting DCA++ to Summit, we outline
a few good practices in software engineering (especially for
C++ codes) which result in more readable, manageable, and
reliable software:
• Develop good templated APIs for the bookkeeping of data

structures and layout for the communication of arrays
either over MPI or between CPUs and GPUs.

• Maintain an object-oriented design when possible. In
our implementation, each computation step is represented
by an object. Each object can be specialized both with
an easily testable CPU-only implementation, and an
optimized GPU-accelerated version. Usually the GPU
specialization inherits from the CPU version. Template
arguments are useful for selecting the implementation
while maintaining the same API.

• Object encapsulation and memory re-utilization can be
combined with a careful use of shared pointers to GPU
resources.

• Each object is tested individually by unit tests and the
CPU implementation acts as a baseline.

On the utilization of Summit, there are a few points to note
apart from ordinary best practices on accelerator-based HPC:
• One needs to be hardware-aware and decide carefully

how software threads are mapped to hardware threads.
This includes the distribution of the CPU and GPU
resources on a node into different resource sets, thread
binding, and the simultaneous multi-thread (SMT) levels.

• With powerful GPUs, allowing multiple CPU threads, or
MPI ranks, to access the same GPU can help increase the
compute intensity. In this case, the GPU Multi-Process
Service (MPS) should be used.

• Collective MPI reductions incur significant overhead on
such a large machine. Minimize the number of calls to
the MPI API by packing the data, and consider local
re-evaluations instead of communications for relatively
small kernels.

• Familiarize with the job scheduling system and use the
appropriate job submission options (BSUB) and JSRUN
flags8 to allocate resources on Summit, in order to opti-
mize utilization of the computing power.

• The performance tools (either vendor-developed or third
parties) to show a holistic view of the CPU / GPU
activities are still not mature enough on Summit. It was
a challenge to optimize our code without having such
information.

VI. CONCLUSION

In this paper we presented our new and improved algorithms
for the DCA++ application (version 2.0). We evaluated and
compared our latest improvements with the old version 1.0.0
on OLCF’s Summit supercomputer. We observed a peak

8One may use the “jsrunVisualizer” tool provided by OLCF (https:
//jsrunvisualizer.olcf.ornl.gov) to visualize the effects of jsrun options on the
resource allocations on a Summit node.

performance of 73.5 PFLOPS for the quantum Monte Carlo
solver on Summit and up to 113× performance improvement
over the old code running at full scale on 4600 Summit
nodes. The improved calculation of dynamical properties us-
ing modern programming models, to exploit the underlying
hardware memory hierarchy, will provide important tests of
the simplified models to explain real materials.
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APPENDIX

Here we summarize the definition of all the relevant physical
quantities used in this paper:
(a) Σc( ~K, iωn): cluster self energy. Either an input or the

result of the previous DCA iteration. It represents the
correction to the electron states due to interactions.

(b) ΣDCA(~k, iωn): Piecewise extension of Σc( ~K, iωn).

(c) G(~k, iωn) or G: single-particle Green’s function. It
describes the configuration of single electrons.

(d) Ḡ( ~K, iωn): coarse-grained single-particle Green’s
function.

(e) G0( ~K, iωn) or G0: bare single-particle Green’s function.
It is computed from Σc( ~K, iωn) and Ḡ( ~K, iωn) and is

used as an input for the MC solver. It represents the
configuration of non-interacting electrons.

(f) Gtp: two-particle Green’s function, also called the
four-point function. Output of the MC solver used to
determine relevant physical properties of the system. It
represents the correlation between a pair of electrons.

(g) β: inverse temperature. The lower the temperature, the
stronger the correlations between electrons are, and the
higher the average expansion order in the MC integration
is, directly impacting the run-time.

(h) H0: non-interacting Hamiltonian. Used to compute the
coarse-grained Green’s function Ḡ( ~K, iωn). It represents
the energy of a non-interacting electron with a given
momentum.

(i) Hint: interacting Hamiltonian. Input to the MC solver. It
represents the interaction strength of pair of electrons on
two given orbitals.

(j) k: expansion order of (6). Its average value scales as
O(βNcU), where Nc is the cluster size and U is the
average interaction strength. Not to be confused with the
module of a momentum vector ~k.

(k) M : k × k matrix. It is an intermediate result closely
related to G stored by the single-particle accumulator.

(l) Nσ
{si,τi}k or N : k× k matrix. Closely related to M and

stored in the MC walker.

For the physical parameters chosen in this paper, all the
single-particle function, i.e. G, G0 and Σc are ˜5 MB large,
while the two-particle Green’s function G4 is 3.4 GB. The
size of the matrices N and M fluctuates with the expansion
order, but on average they are ˜100 MB large.
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